Isometamidium chloride (Samorin) is therapeutic in rainbow trout (Oncorhynchus mykiss) during preclinical and chronic cryptobiosis. However, the toxic mechanism of isometamidium on Cryptobia salmositica has not been elucidated. The objective of the present study was to examine the in vitro effects of isometamidium on C. salmositica. Under in vitro conditions, isometamidium chloride reduced the infectivity of C. salmositica suspended in whole fish blood. It accumulated rapidly in the kinetoplast (within 1 min) and caused disruption and decantenation of kinetoplast DNA. The in vitro cryptobiacidal activity of isometamidium was reduced when parasites were incubated in medium containing serum supplement, suggesting that isometamidium also binds to plasma proteins. Isometamidium altered glycoprotein receptors (epitopes) for antibodies on the surface of C. salmositica and thus protected some of the parasites from lysis by complement-fixing antibodies. In vitro oxygen consumption and carbon dioxide production decreased in drug-exposed C. salmositica, with increased products of glycolysis, i.e., lactate and pyruvate, after exposure to isometamidium. This suggests that some C. salmositica switched from aerobic respiration to glycolysis when the mitochondrion was damaged by isometamidium.
How to translate text using browser tools
1 February 2001
THE IN VITRO EFFECTS OF ISOMETAMIDIUM CHLORIDE (SAMORIN) ON THE PISCINE HEMOFLAGELLATE CRYPTOBIA SALMOSITICA (KINETOPLASTIDA, BODONINA)
Bernadette F. Ardelli,
Patrick T. K. Woo
ACCESS THE FULL ARTICLE